Publications as Associate Professor
2024
- Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. Nguyen T N H, Horowitz L F, Krilov T, Lockhart E, Kenerson H L, Gujral T S, Yeung R S, Arroyo-Currás N, Folch A, 2024, DOI: 10.1126/sciadv.adn5875.
- Tuning N-heterocyclic carbene wingtips to form electrochemically stable adlayers on metals. Jensen I M, Clark V, Arroyo‑Currás N, Jenkins D M. Mater. Adv., 2024, DOI: 10.1039/D4MA00648H. [JHU Repository]
- 3D-printed electrochemical cells for multi-point aptamer-based drug measurements. Mack J, Murray R, Lynch K, Arroyo‑Currás N, Sens. Diagn., 2024, DOI: 10.1039/D4SD00192C.
- Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing. Khoo H, Allen W S, Arroyo‑Currás N, Soojung C, Sci. Rep., 2024, DOI: 10.1038/s41598-024-68761-5.
- Beyond the Gold-Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-based Sensing. Arroyo-Currás N, ACS Sens., 2024, DOI: 10.1021/acssensors.4c00331.
- Outpatient COVID-19 convalescent plasma recipient antibody thresholds correlated to reduced hospitalizations within a randomized trial. Park H-S, Yin A, Barranta C, Lee J S, Caputo C A, Sachithanandham J, Li M, Yoon S, Sitaras I, Jedlicka A, Eby Y, Ram M, Fernandez R E, Baker O, Shenoy A G, Mosnaim G S, Fukuta Y, Patel B, Heath S L, Levine A C, Meisenberg B R, Spivak E S, Anjan S, Huaman M A, Blair J E, Currier J S, Paxton J H, Gerber J M, Petrini J R, Broderick P B, Rausch W, Cordisco M E, Hammel J, Greenblatt B, Cluzet V C, Cruser D, Oei K, Abinante M, Hammitt L L, Sutcliffe C G, Forthal D N, Zand M S, Cachay E R, Raval J S, Kassaye S G, Marshall C E, Yarava A, Lane K, McBee N A, Gawad A L, Karlen N, Singh A, Ford D E, Jabs D A, Appel L J, Shade D M, Lau B, Ehrhardt S, Baksh S N, Shapiro J R, Ou J, Na Y B, Knoll M D, Ornelas-Gatdula E, Arroyo-Currás N, Gniadek T J, Caturegli P, Wu J, Ndahiro N, Betenbaugh M J, Ziman A, Hanley D F, Casadevall A, Shoham S, Bloch E M, Gebo K A, Tobian A A R, Laeyendecker O, Pekosz A, Klein S L, Sullivan D J. JCI Insight. 2024; DOI: 10.1172/jci.insight.178460.
- Dual-targets binding protection mediated rolling circle transcription with tandem fluorescent RNA aptamers for label-free detection of liver cancer biomarkers. Guan C, Ma Y, Sun P, Wu Yu, Arroyo-Currás N, Chen G, Feng C. Sens. Actuators B Chem., 2024, DOI: 10.1016/j.snb.2024.135521.
- Rational Approach to Optimizing Conformation-Switching Aptamers for Biosensing Applications. Wolfe M, Cramer A, Webb S, Goorskey E, Chushak Y, Mirau P, Arroyo-Currás N, Chávez J L. ACS Sens., 2024, DOI: 10.1021/acssensors.3c02004.
- Nucleic Acid-based Electrochemical Sensors Facilitate the Study of DNA Binding by Platinum (II)-based Antineoplastics. Wu Y, Arroyo-Currás N. Angew. Chem. Int. Ed., 2024, DOI: 10.1002/anie.202312402. [JHU Repository]
2023
- Survey of Conductive Polymers for the Fabrication of Conformation Switching Nucleic Acid-Based Electrochemical Biosensors. Shaver A, Mallires K, Harris J, Kavner J, Wang B, Gottlieb R, Lión-Villar J, Herranz M A, Martín N, Arroyo-Currás N. ACS Appl. Polym. Mater., 2023, DOI: 10.1021/acsapm.3c02206.
- Analytical Validation of Aptamer-Based Serum Vancomycin Monitoring Relative to Automated Immunoassays. Liu Y, Mack JO, Shojaee M, George A, Clarke W, Patel N, Arroyo-Currás N. ACS Sens., 2023, DOI: 10.1021/acssensors.3c01868. Data access: [Zenodo Repository]
- 3D-Printed, aptamer-based microneedle sensor arrays using magnetic placement on live rats for pharmacokinetic measurements in interstitial fluid. Reynoso M, Chang A-Y, Wu Y, Murray R, Suresh S, Dugas Y, Wang J, Arroyo-Currás N. Biosens. Bioelecton., 2023, DOI: 10.1016/j.bios.2023.115802.
- Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. Li S, Dai J, Zhu M, Arroyo-Currás N, Li H, Wang Y, Wang Q, Lou X, Kippin T E, Wang S, Plaxco K W, Li H, Xia F. ACS Nano, 2023, DOI: 10.1021/acsnano.3c06520.
- Stability of N-Heterocyclic Carbene Monolayers under Continuous Voltammetric Interrogation. Pellitero M A, Jensen I M, Dominique N L, Ekowo L C, Camden J P,Jenkins D M, Arroyo-Currás N. ACS Appl. Mater. Interfaces, 2023, DOI: 10.1021/acsami.3c06148. Data access: [JHU Repository]
- High-precision monitoring of and feedback control over drug concentrations in the brains of freely moving rats. Gerson J, Erdal M K, McDonough M H, Ploense K L, Dauphin-Ducharme P, Honeywell K M, Leung K K, Arroyo-Curras N, Gibson J M, Emmons N A, Meiring W, Hespanha J P, Plaxco K W, Kippin T E. Science advances, 2023, DOI: 10.1126/sciadv.adg3254
- Continuous Molecular Monitoring in the Body via Nucleic Acid–based Electrochemical Sensors: The Need for Statistically-powered Validation. Yuan Y, Arroyo-Currás N, Curr. Opin. Electrochem., 2023, DOI:10.1016/j.coelec.2023.101305
- Perspective—The Feasibility of Continuous Protein Monitoring in Interstitial Fluid. Young T, Clark V, Arroyo-Currás N, Heikenfeld J, ECS Sensors Plus, 2023, DOI:10.1149/2754-2726/accd7e
- Expanding the Monolayer Scope for Nucleic Acid-Based Electrochemical Sensors Beyond Thiols on Gold: Alkylphosphonic Acids on ITO. Shaver, A; Arroyo-Currás, N., ECS Sensors Plus, 2023, DOI:10.1149/2754-2726/acc4d9. Data access: [JHU Repository]
- Explaining the Decay of Nucleic Acid-Based Sensors under Continuous Voltammetric Interrogation. Clark, V.; Pellitero, M.A.; Arroyo-Currás, N., Anal. Chem., 2023, DOI:10.1021/acs.analchem.2c051.
Data access: [JHU Repository]
Publications as Assistant Professor
2023
- Os(II/III) complex supports pH-insensitive electrochemical DNA-based sensing with superior operational stability than the benchmark methylene blue reporter. Pellitero, M.A.; Kundu, N.; Sczepanski, J.T.; Arroyo-Currás, N., Analyst., 2023, DOI:10.1039/D2AN01901A
2022
- Optimization of Vancomycin Aptamer Sequence Length Increases the Sensitivity of Electrochemical, Aptamer-Based Sensors In Vivo. Shaver, A.; Mahlum, J.D.; Scida, K.; Johnston, M.L.; Pellitero, M. A.; Wu, Y.; Carr, G.V.; Arroyo-Currás, N., ACS Sens., 2022, DOI:10.1021/acssensors.2c01910
- Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Clark, V.; Waters, K.; Orsburn, B.; Bumpus, N.N.; Kundu, N.; Sczepanski, J.T.; Ray, P.; Arroyo-Currás, N.; Angew. Chem. Int. Ed., 2022, DOI: 10.1002/anie.202211292
- Antibody–Invertase Fusion Protein Enables Quantitative Detection of SARS-CoV-2 Antibodies Using Widely Available Glucometers. Leonard, E. K.; Pellitero, M.A.; Juelg, B.; Spangler, J.B.; Arroyo-Currás, N.; J. Am. Chem. Soc., 2022, DOI: 10.1021/jacs.2c02537
- Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; Nie, Y.; Laffel, L. M.; Doyle, F.J. III; Patti, M-E.; Dassau, E.; Wang, J.; Arroyo-Currás, N.; Anal. Chem., 2022, DOI: 10.1021/acs.analchem.2c00829
- Study of Surface Modification Strategies to Create Glassy Carbon‑supported, Aptamer‑based Sensors for Continuous Molecular Monitoring. Pellitero, M. A.; Arroyo-Currás, N.; Anal. Bioanal. Chem., 2022, DOI: 10.1007/s00216-022-04015-5
- Electrochemical Aptamer-Based Sensors: A Platform Approach to High-Frequency Molecular Monitoring In Situ in the Living Body. Dauphin-Ducharme, P.; Ploense, K.L.; Arroyo-Currás, N.; Kippin, T.E.; Plaxco, K.W.; In Biomedical Engineering Technologies: Volume 1, Ossandon, M. R.; Baker, H.; Rasooly, A., Eds. Springer US: New York, NY, 2022; 479-492. DOI: 10.1007/978-1-0716-1803-5_25
2021
- The Challenge of Long-term Stability for Nucleic Acid-based Electrochemical Sensors. Shaver, A.; Arroyo-Curras, N.; Curr. Opin. Electrochem., 2021, DOI: 10.1016/j.coelec.2021.100902
- Nanoscale Bioreceptor Layers Comprising Carboxylated Polythiophene for Organic Electrochemical Transistor-Based Biosensors. Song, Y.; Lamberty, Z.D.; Liang, J.; Pellitero, M.A.; Wagner, J.S.; Jumai’an, E.; Bevan, M.A.; Frechette, J.; Arroyo-Currás, N.; Katz, H. E.; ACS Appl. Nano Mater., 2021, DOI:10.1021/acsanm.1c02949
- Chemical Equilibrium-Based Mechanism for the Electrochemical Reduction of DNA-Bound Methylene Blue Explains Double Redox Waves in Voltammetry. Mahlum, J.D.; Pellitero, M.A.; Arroyo-Currás, N; J. Phys. Chem. C, 2021, DOI: 10.1021/acs.jpcc.1c00336
- Nuclease Hydrolysis Does Not Drive the Rapid Signaling Decay of DNA Aptamer-Based Electrochemical Sensors in Biological Fluids. Shaver, A.; Kundu, N.; Young, B.E.; Vieira, P.A.; Sczepanski, J.T.; Arroyo-Currás, N; Langmuir, 2021, DOI: 10.1021/acs.langmuir.1c00166
- Interrogation of Electrochemical Aptamer-Based Sensors via Peak-to-Peak Separation in Cyclic Voltammetry Improves the Temporal Stability and Batch-to-Batch Variability in Biological Fluids. Pellitero, M.A.; Curtis, S.D.; Arroyo-Curras, N.; ACS Sensors, 2021, DOI: 10.1021/acssensors.0c02455
- Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. Zakashansky, J.A.; Imamura, A.H.; Salgado, D.F.; Romero Mercieca, H.; Aguas, R.F.L.; Lao, A.M.; Pariser, J.; Arroyo-Curras, N.; Khine, M.; Anal. Methods, 2021, DOI: 10.1039/D1AY00041A
- Advances in Nucleic Acid Architectures for Electrochemical Sensing. Wu, Y.; Arroyo-Curras, N.; Curr. Opin. Electrochem., 2021, DOI: 10.1016/j.coelec.2021.100695
2020
- Hydrogel-coating improves the in-vivo stability of electrochemical aptamer-based biosensors. Li, S.; Dai, J.; Zhu, M.; Arroyo-Currás, N.; Li, H.; Wang, Y.; Wang, Q.; Lou, X.; Kippin, T.E.; Wang, S.; Plaxco, K.W.; Li, H.; Xia, F.; bioRxiv, 2020, DOI: 10.1101/2020.11.15.383992
- Real-time monitoring of a protein biomarker. Parolo, C.; Idili, A.; Ortega, G.; Csordas, A. T.; Hsu, A.; Arroyo-Curras, N.; Yang, Q.; Ferguson, B. S.; Wang, J.; Plaxco, K. W.; ACS Sens., 2020, DOI: 10.1021/acssensors.0c01085
- An Electrochemical Biosensor Exploiting Binding-Induced Changes In Electron Transfer Of Electrode-Attached DNA Origami To Detect Hundred Nanometer-Scale Targets. Arroyo-Curras, N.; Sadeia, M.; Ng, A. K.; Fyodorova, Y.; Williams, N.; Afif, T.; Huang, C.; Ogden, N.; Andresen Eguiluz, R.C.; Su, H.; Castro, C. E.; Plaxco, K. W.; Lukeman, P. S.; Nanoscale, 2020, DOI: 10.1039/D0NR00952K
- Hot-SWV: Square Wave Voltammetry with Hot Microelectrodes. Frkonja-Kuczin, A.; Alicea-Salas, J.; Arroyo-Curras, N.; Boika, A.; Anal. Chem., 2020, DOI: 10.1021/acs.analchem.0c00427
- E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Parolo, C.; Greenwood, A. S.; Ogden, N. E.; Kang, D.; Hawes, C.; Ortega, G.; Arroyo-Currás, N.; Plaxco, K. W.; Nature Microsyst. Nanoeng., 2020, DOI: 10.1038/s41378-019-0119-5
- Alkanethiol Monolayer End Groups Affect the Long-term Operational Stability and Signaling of Electrochemical, Aptamer-based Sensors in Biological Fluids. Shaver, A; Curtis, S.; Arroyo-Currás, N.; ACS Appl. Mater. Interfaces, 2020, DOI: 10.1021/acsami.9b22385
- From the Beaker to the Body: Translational Challenges for Electrochemical, Aptamer-Based Sensors. Arroyo-Currás, N.; Dauphin-Ducharme, P.; Scida, K.; Chavez, J.L.; Anal. Methods, 2020, DOI: 10.1039/D0AY00026D
2019
- Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review. Pellitero, M. A.; Shaver, A.; Arroyo-Currás, N.; J. Electrochem. Soc., 2019, DOI: 10.1149/2.0292003JES
- Discharging Behavior of Confined Bipolar Electrodes: Coupled Electrokinetic and Electrochemical Dynamics. Eden, A.; Scida, K.; Arroyo-Currás, N.; Eijkel, J.C.T.; Meinhart, C.D.; Pennathur, S.; Electrochim. Acta, 2019, DOI: 10.1016/j.electacta.2019.135275
- Electrochemical Aptamer-based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-controlled Drug Delivery. Dauphin-Ducharme, P.; Yang, K.; Arroyo-Curras, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W.; ACA. Sens., 2019, DOI: 10.1021/acssensors.9b01616
- Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data. Curtis, S.D.; Ploense, K.L.; Kurnik, M.; Ortega, G.; Parolo, C.; Kippin, T.E.; Plaxco, K.W.; Arroyo-Currás, N.; Anal. Chem., 2019, DOI: 10.1021/acs.analchem.9b02553
- Ultra-high-precision, in-vivo pharmacokinetic measurements highlight the need for and a route towards more highly personalized medicine. Vieira, P.A.; Shin, C.; Arroyo-Curras, N.; Ortega, G.; Li, W.; Keller, A.A.; Plaxco, K.W.; Kippin, T.E.; Front. Mol. Biosci., 2019, DOI: 10.3389/fmolb.2019.00069
- Seconds-Resolved Pharmacokinetic Measurements of the Chemotherapeutic Irinotecan In Situ in the Living Body. Idili, A.; Arroyo-Curras, N.; Ploense, K.L.; Csordas, A.T.; Kuwahara, M; Kippin, T.E.; Plaxco, K.W.; Chem. Sci., 2019, DOI: 10.1039/c9sc01495k
- Fluorescence-Based Observation of Transient Electrochemical and Electrokinetic Effects at Nanoconfined Bipolar Electrodes. Scida, K.; Eden, A.; Arroyo-Curras, N.; MacKenzie, S; Satik, Y.; Meinhart, C. D.; Eijkel, J. C. T.; Pennathur, S.; ACS Appl. Mater. Interfaces, 2019, DOI: 10.1021/acsami.9b01339
- Modeling Faradaic Reactions and Electrokinetic Phenomena at a Nanochannel-Confined Bipolar Electrode. Eden, A.; Scida, K.; Arroyo-Curras, N.; Eijkel, J. C. T.; Meinhart, C. D.; Pennathur, S.; J. Phys. Chem. C, 2019, DOI: 10.1021/acs.jpcc.8b10473
- High-precision electrochemical measurements of the guanine-, mismatch- and length-dependence of electron transfer from electrode-bound DNA are consistent with a contact-mediated mechanism. Dauphin-Ducharme, P.; Arroyo-Currás, N.; Plaxco, K.W.; J. Am. Chem. Soc., 2019, DOI: 10.1021/jacs.8b11341
2018
- Surface Attachment Enhances the Thermodynamic Stability of Protein L. Ortega, G.; Kurnik, M.; Dauphin-Ducharme, P.; Li, H.; Arroyo-Currás, N.; Caceres, A.; Plaxco, K.; Angew. Chem., Int. Ed., 2018, DOI: 10.1002/anie.201812231
- High-precision control of plasma drug levels using feedback-controlled dosing. Arroyo-Curras, N.; Ortega, G.; Copp, D.A.; Ploense, K.L.; Plaxco, Z.A.; Kippin, T.E.; Hespanha, J.P.; Plaxco, K.W.; ACS Pharmacol. Transl. Sci., 2018, DOI: 10.1021/acsptsci.8b00033
- Chain Dynamics Limit Electron Transfer from Electrode-Bound, Single-Stranded Oligonucleotides. Dauphin-Ducharme, P.; Arroyo-Curras, N.; Adhikari, R.; Somerson, J.; Ortega, G.; Makarov, D. E.; Plaxco, K. W.; J. Phys. Chem. C, 2018, DOI: 10.1021/acssensors.7b00787
Postdoctoral Work
- Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors. Arroyo-Curras, N.; Dauphin-Ducharme, P.; Ortega, G.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; ACS Sensors, 2017, DOI: 10.1021/acssensors.7b00787
- High Surface Area Electrodes Generated via Electrochemical Roughening Improve the Signaling of Electrochemical Aptamer-based Biosensors. Arroyo-Curras, N.; Scida, K.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; Anal. Chem., 2017, DOI: 10.1021/acs.analchem.7b02830
- A Simulation-Based Approach to Determining Electron Transfer Rates using Square-Wave Voltammetry. Dauphin-Ducharme, P.; Arroyo-Currás, N.; Kurnik, M.; Ortega, G.; Li, H.; Plaxco, K. W.; Langmuir, 2017, DOI: 10.1021/acs.langmuir.7b00359
- A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors. Li, H.; Dauphin-Ducharme, P.; Arroyo-Currás, N.; Tran, C. H.; Vieira, P. A.; Li, S.; Shin, C.; Somerson, J.; Kippin, T. E.; Plaxco, K. W.; Angew. Chem. Int. Ed. Engl., 2017, DOI:10.1002/anie.201700748
- Real-time measurement of small molecules directly in awake, ambulatory animals. Arroyo-Currás, N.; Somerson, J.; Vieira, P. A.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; PNAS, 2017, DOI: 10.1073/pnas.1613458114
- Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood. Li, H.; Arroyo-Curras, N.; Kang, D.; Ricci, F.; Plaxco, K.W.; JACS, 2016, DOI: 10.1021/jacs.6b08671
- Transdermal analyte sensing device. Lansdorp, B.; Strenk, E.; Arroyo-Currás, N.; Imberman, D. U.S. Patent US20160338627 A1(2016)
Graduate School
- Nanometer Scale Scanning Electrochemical Microscopy Instrumentation. Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K.C.; Bard, A.J.; Anal. Chem., 2016, DOI:10.1021/acs.analchem.6b03024.[Link]
- Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy. Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K.C.; Bard, A.J.; Anal. Chem., 2016, DOI:10.1021/jacs.6b03980
- Chemical Characteristics of the Products of the Complexation Reaction Between Copper(II) and a Tetra-Aza Macrocycle in the Presence of Chloride Ions. Lincoln, K. M.; Arroyo-Currás, N.; Johnston, H. M.; Hayden, T. D.; Pierce, B. S.; Bhuvanesh, N.; Green, K. N.; J. Coord. Chem., 2015, DOI:10.1080/00958972.2015.1068935
- A Redox Flow Battery that Uses Complexes of Cobalt and Iron with Amino-Alcohol Ligands in Alkaline Electrolytes to Store Electrical Energy. Bard, A. J.; Arroyo-Currás, N.; U.S. Patent, PCT Int. App. WO 2015054260 A2 (2015)
- Iridium Oxidation as Observed by Surface Interrogation Scanning Electrochemical Microscopy. Arroyo-Currás, N.; Bard, A. J.; J. Phys. Chem. C, 2015, 119, 8147-8154
- Development of an Alkaline Redox Flow Battery: From Fundamentals to Benchtop Prototype. Arroyo-Currás, N.; Ph.D. Dissertation, The University of Texas at Austin, June 2015
- An Alkaline Flow Battery Based on the Coordination Chemistry of Iron and Cobalt. Arroyo-Currás, N.; Hall, J.W.; Dick, J.E.; Jones, R.A.; Bard, A.J.; J. Electrochem. Soc., 2015, 162, A378-A383
- Biodegradable Electroactive Polymers for Electrochemically-Triggered Drug Delivery. Hardy, J.G.; Mouser, D.J.; Arroyo-Currás, N.; Geissler, S.; Chow, J.K.; Nguy, L.; Kim, J.M.; Schmidt, C.E.; J. Mater. Chem. B, 2014, 2, 6809-6822
- Electrochemical Monitoring of TiO2Atomic Layer Deposition by Chronoamperometry and Scanning Electrochemical Microscopy. Satpati, A.K.; Arroyo-Currás, N.; Li, J.; Yu, E.T.; Bard, A.J.; Chem. Mater., 2013, 25, 4165-4172
- Achieving Nanometer Scale Tip-to-Substrate Gaps with Micrometer-Size Ultramicroelectrodes in Scanning Electrochemical Microscopy. Shen, M.; Arroyo-Currás, N.; Bard, A.J.; Anal. Chem., 2011, 83, 9082-9085
Undergraduate School
- Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations. Arroyo-Currás, N.; Rosas-García, V.M.; Videa, M.; Molecules, 2016, DOI:10.3390/molecules21111422
- Comparative Evaluation of a Modified Acetic Method for Extraction of Antioxidant Compounds from Black Beans (Phaseolus vulgaris). Islas, J.F.; Dávalos-Balderas, A.J.; Arroyo-Currás, N.; Cano, B.G.; Galindo-Jacobo, P.; Guajardo-Salinas, G.; Gaytan-Ramos, A., Moreno-Cuevas, J.E.; Food and Nutr. Sci., 2012, 3, 348-353
- Electrochemical Study of Flavonoids in Acetonitrile: Structure-Activity Relationships. Arroyo-Currás, N.; Videa, M.F.; ECS Trans.,2010, 29, 349-359
- Sistema Aprótico para el Estudio Voltamperométrico de Polifenoles: Actividad Antioxidante vs.Conducta Electroquímica. Arroyo-Currás, N.; B.S. Dissertation, ITESM Campus Monterrey, 2009
- Black Bean Extract Ameliorates Liver Fibrosis in Rats with CCl4-induced injury. López-Reyes, A.G.; Arroyo-Currás, N.; Cano, B.G.; Lara-Díaz, V.J.; Guajardo-Salinas, G.E.; Islas, J.F.; Morales-Oyarvide, V.; Morales-Garza, L.A.; Galvez-Gastelum, F.J.; Grijalva, G.; Moreno-Cuevas, J.E.; Ann. Hepatol., 2008, 7, 130-135
- Effects of Bone Marrow Cell Transplant on Thyroid Function in an I131-induced low T4 and elevated TSH rat model. Guajardo-Salinas, G.E.; Carvajal, J.A.; Gaytan-Ramos, A.A.; Arroyo, L.; López-Reyes, A.G.; Islas, J.F.; Cano, B.G.; Arroyo-Currás, N.; Dávalos, A.; Madrid, G.; Moreno-Cuevas, J.E.; J. Negat. Results Biomed.; 2007, 6, 1-8